Markets and Reliability in the Texas and California Electricity Systems

James Bushnell UC Davis and NBER

What is a blackout?

Name	Area Effected	Predictable?	Example	Frequency
Distribution problem	Local	Not Very (probabilities only)	My House	1.5-2 per year
Cascading Transmission problems	Many States	Νο	2003 US East Coast Blackout	?10 -20 years?
Supply Shortage	Parts of Cities	Yes	California in August	1 in 10 years (goal)

Special Category: Wildfire Prevention Blackouts

Figure 3: PSPS Scope Changes as Weather Forecasts Change

Each color indicates the geographic location of a different Time-Place for this PSPS event

Blackouts in Context

- 2020 CA Wildfire prevention (PSPS)
 - 30,000 350,00 customers lose power for 24-72 hours.
 - Seven large PSPS events in PG&E territory Sept-December.
- August 2020 CA heatwave
 - About 500,000 customers lose power for 15-150 *minutes*.
 - Outages rotated to achieve 1000 MW load reduction
- February 2021 Texas winter storm
 - About 4.5 million customers lose power for 24-72 hours
- 2003 East coast blackout
 - 55 Million people lose power for 8 72 hours
 - But not during terrible weather

Reliability Does Pay: But does it pay enough?

ENERGY INSTITUTE AT HAAS

Reliability and Markets

- Can markets provide sufficient reward for reliable power supply?
- Would a capacity market have prevented the Texas events?
 - I don't think so; Planning margins were met
- NYISO or PJM style capacity market would have provided arguably *weaker* performance incentives

Multiple Steps to Reliable Electricity Supply

- Capacity Markets focus on capacity planning
- Most put insufficient weight on the other steps to reliable supply
- Strong performance incentives are needed to ensure *capacity* translates to *energy*
- But no market has bigger incentives than Texas

UCDAVIS ENERGY ECONOMICS PROGRAM

Factors Influencing the California Reliability Outlook

- Politics of "scoring" resources & needs
 - What demand forecast should be used?
 - How much credit should different sources get?
- Return of retail competition in the form of community choice aggregation
 - Gaps in RA rules no longer papered over by regulatory procurement
 - No penalties for being short on the "day of"
- Tighter capacity in rest of the west
 - CAISO rules limit prices to below those seen in AZ during August 2020
 - Integration with other markets cuts both ways in a supply shortage situation

Capacity Sales and Performance Incentives

- Markets like CA have relatively weak
 penalties for capacity non-performance
- Some markets, like ISO-NE charge upwards of \$5000/MWh for nonperformance of capacity during any period where there is a constraint relaxation
- But Texas market has the largest penalty of them all, \$9000/MWh lost opportunity

– Would that pay for deicing turbine blades?

Thank You!

James Bushnell UC Davis deep.ucdavis.edu

